Acknowledgements.

This work was financed partly by a research grant from the EC to K.G. by the Franco-German international exchange programme PROCOPE, by the Franco-Uruguayan exchange programme ECOS, and by W. Alt for statistical advice. G.v.d.E. is a recipient of a Heisenberg stipend of the DFG. J. Collett, T. Stereopis in loads. Nature 267, 349–351 (1977).

Acknowledgements. The behavioural experiments and the analysis of the electric images were performed by S.S. during his work for his diploma thesis. We thank H. Beckmann for providing laboratory space and for his continuous support throughout this study. C. C. Roll, H. Beckmann, I. Mogilski, S. F.的文字被遮挡，无法完全阅读。
physiological summation along local trajectories. For simple translation, the time constant of summation was ~600 ms, and was nearly invariant with velocity. For biological motion, however, the time constants were much larger, up to 2,800 ms. Furthermore, the estimate of summation depended on image velocity, in roughly inverse proportion, indicating that the limiting factor was the number of cycles presented rather than time passed per sec.

The results indicate several new facts about biological motion. They demonstrate objectively the robustness of this curious stimulus; the visual system is very sensitive to fragments of natural motion scenes: observers reliably detected the direction of motion of point-lit figures in greatly degraded conditions, when half of the points were of opposite polarity, local-motion trajectories were given by two-frame sequences, and up to 1,000 similar dots were sprinkled over the limited area. Indeed, with adequate spatial sampling, sensitivity for discriminating the direction of ambulation was as high as that for its detection, or for detection of discrimination of direction of simple translation. Temporal summation for biological motion occurs over much longer periods than for simple translation, and seems to be limited by the number of cycles of ambulation, rather than by total duration of the stimulus.

Theoretically, sensitivity might be expected to increase linearly with the spatial sampling density, as observed in discrimination of Glass patterns, simple translational motion and complex optic-flow patterns. The same relationship occurred here for detection and discrimination of translation, and for detection of biological motion. This latter result may reflect independent integration of signals along the trajectory of each joint by local-motion mechanisms, given that the sampling rate of each trajectory will vary directly with the sampling rate of the joints, and that detection of a single joint is sufficient to reveal the location of the walker.

Direction and coherence discrimination of biological motion varied more with undersampling than did detection, so, at low sampling rates, direction could not be discerned at noise levels that were nearly two logarithmic units below the detection threshold. If there were a linear integrator (or matched filter) that sums the motion signal along all joint trajectories, then sensitivity for direction and coherence discrimination should increase linearly with sampling rate, as it does for the examples mentioned above. The far steeper slope observed for biological motion may indicate that these types of task are mediated by detectors with efficiency that varies dynamically with the signal strength. It has been suggested that biological motion depends on virtual links between appropriate joints, requiring the simultaneous analysis of both joints. This idea is intuitively appealing, but the requirement of coincidence does not in itself predict the steep summation, because it affects both signal and noise equally, so the theoretical prediction is still a curve of unit slope (or an even shallower slope, depending on the assumptions about the coincidences produced by random noise).

Our results indicate that there is probably no specialized hardware for biological motion that acts like an ideal detector, as seems to exist for other forms of simple and complex motion or spatial vision. Instead, the results show that biological motion may be analysed by very sensitive, but flexible, mechanisms with variable efficiency. One method of achieving variable efficiency would be by a system that adjusts its internal noise (or threshold) to respond optimally to the stimulus under all conditions. The advantage of such a system over the seemingly simpler matched-filter systems may be that it can optimize a limited neural resource for the analysis of the much wider range of stimuli that can yield information about spatial structure from motion.

Methods

Both biological and translational motion were created with a ‘limited-lifetime’ technique, at a sampling rate of 30 Hz (Fig. 1). Each signal dot moved to the next position in the motion sequence, then disappeared; it was ‘reborn’ at a

Figure 2 Sensitivity, expressed as the number of noise dots at threshold, for detection (filled circles) and direction discrimination (open circles), for both simple translation and biological motion. The open triangles indicate results of a study in which the observer was required to discriminate ‘coherent’ from ‘incoherent’ motion; in this case, the upper and lower body moved either in the same or in opposite directions. The steepness of the log-log curves (calculated for translation detection; 1.24 and 1.08 for translation discrimination; 1.29 and 1.12 for motion; and 4.48 for discriminating coherent from incoherent motion (P.N.). S.M. estimate of summation depended on image velocity, in roughly inverse proportion, indicating that the limiting factor was the time constants were much larger, up to 2,800 ms. Furthermore, the estimate of summation depended on image velocity, in roughly inverse proportion, indicating that the limiting factor was the number of cycles presented rather than time passed per sec.

Figure 3 Sensitivity for direction discrimination, for both translation and biological motion. The following range of image speeds was used: 1.3 deg s$^{-1}$ (filled squares) and 7.3 deg s$^{-1}$ (open squares) for translation; and 1.3 deg s$^{-1}$ (filled circles) and 3.8 deg s$^{-1}$ (open circles) for biological motion, using the limited-lifetime procedure (with six joints) (see Methods). The dashed vertical lines indicate the transition from physiological to probability summation, calculated by best-fit of a two-segment template of variable slope. The summation constant for translation was relatively short (600 ms) and invariant with speed, whereas summation for biological motion was longer and varied inversely with image speed. The initial steep slope of ~2 for all curves is predicted by a linear integrator given that the stimulus was embedded in a 7-s noise sequence. We obtained similar results with another subject (S.M.).
Temporal dynamics of chromatic tuning in macaque primary visual cortex

Nicolas P. Cottaris* & Russell L. De Valois†

The ability to distinguish colour from intensity variations is a difficult computational problem for the visual system because each of the three cone photoreceptor types absorb all wavelengths of light, although their peak sensitivities are at relatively short (S cones), medium (M cones), or long (L cones) wavelengths. The first stage in colour processing is the comparison of the outputs of different cone types by spectrally opponent neurons in the retina and upstream in the lateral geniculate nucleus1–3. Some neurons receive opponent inputs from L and M cones, whereas others receive input from S cones opposed by combined signals from L and M cones. Here we report how the outputs of the L/M- and S-opponent geniculate cell types are combined in time at the next stage of colour processing, in the macaque primary visual cortex (V1). Some V1 neurons respond to a single chromatic region, with either a short (68–95 ms) or a longer (96–135 ms) latency, whereas others respond to two chromatic regions with a difference in latency of 20–30 ms. Across all types, short latency responses are mostly evoked by L/M-opponent inputs whereas longer latency responses are evoked mostly by S-opponent inputs. Furthermore, neurons with late S-cone inputs exhibit dynamic changes in the sharpness of their chromatic tuning over time. We propose that the sparse, S-opponent signal in the lateral geniculate nucleus is amplified in area V1, possibly through recurrent excitatory networks. This results in a delayed, sluggish cortical S-cone signal which is then integrated with L/M-opponent signals to rotate the lateral geniculate nucleus chromatic axes4–5.

The term ‘receptive field’ is used traditionally to characterize how a neuron responds to stimuli in different spatial locations, thus referring to a spatial receptive field. Here we are concerned with determining how a cortical neuron responds to stimuli consisting of chromatic shifts from a white point to different locations in colour space, and how this responsiveness develops over time. We are therefore studying a chromatic–temporal receptive field. To examine the cortical transformation of lateral geniculate nucleus (LGN) chromatic signals directly, we specified stimulus chromaticity in the MacLeod–Boynton–Derrington–Krauskopf–Lennie (MBDKL) isoluminant plane6–8. This plane is defined by two axes whose chromaticities isolate responses from the two types of LGN opponent neuron: the 0° to 180° axis isolates responses from L/M-opponent LGN neurons (0°: L – M, ‘pinkish-red’; 180°: M – L, ‘cyan’); and the 90° to 270° axis isolates responses from S-opponent LGN neurons (90°: S – (L + M), ‘violet’; 270°: – S + (L + M), ‘greenish-yellow’). A cortical cell that integrates signals from both types of colour-coding geniculate cell, as most cortical cells do, would have a preferred chromaticity at an intermediate angle, depending on the relative weights and timings of the cell’s inputs.

To study the structure of the chromatic–temporal receptive field, we probed neurons with spatially uniform chromatic stimuli presented in a fast (30-ms flashes), pseudorandom sequence and analysed the neuronal response using the reverse-correlation procedure9,10. Stimulus dimensions were one to two times the classical receptive-field dimensions, as measured with m-sequence receptive-field mapping11. For each action potential (spike) fired, we determined which chromatic stimulus had been presented at various preceding times. Spikes were accumulated in a two-dimensional

letters to nature

joint chosen randomly from those not sampled in the previous sequence. All signal and noise dots were 7 arcmin in diameter, and were half-white and half-black against a grey background of 20 cd m−2 (thus causing no change in mean luminance). The walker was generated by Cutting’s algorithm17 (with no net translation) from a randomly chosen starting position, usually at 0.75 gait-cycles per second, with the individual dots moving at an average speed of 1.8 deg s−1. For translation, dots were placed in random positions over the area of the walker, and all moved at 1.8 deg s−1 (to obtain results shown in Fig. 2). The walker was symmetrical about the vertical midline (particularly the upper body), so spatial cues alone could not aid discrimination.

Observers fixated the centre of a Barco Calibrator monitor (frame rate 180 Hz) from a distance of 80 cm. After a warning signal, the target was presented to either the left or the right of fixation, with an appropriate density control on the other side (both stimuli subtended 3.4 × 5.7°, centred 2.4° from fixation). For the walker, the density control was derived from the walking algorithm by randomizing the order of the frames presented. For translation, the control dots were displayed in new random positions within the region on each frame. Thus both target and control were dynamic, but only in the target was the motion coherent and smooth. Detection of either class of stimuli could be based on a judgement of smoothness of motion of individual dots. Discrimination was a two-stage process, in which observers first selected which side contained the target, and then identified the direction of the moving dots (for translation), the direction of ambulation (for discrimination of biological motion), or whether the upper and lower body of the walker moved coherently. As the discrimination thresholds for translation were similar to those for detection, it is unlikely that the two-stage task was an impediment to performance.

Dynamic random noise, comprising dots of similar size and colour, was scattered over the entire screen. The density of the noise increased or decreased in each trial, depending on the correctness of the observer’s response (following the adaptive procedure QUEST19, without feedback). There were 200–400 trials for each condition, with sensitivity defined as the noise level at which 75% correct responses are made; sensitivity was calculated by fitting a raised cumulative gaussian curve (with asymptotes at 0.5 and 1) to the psychometric functions. For spatial summation (Fig. 2), stimuli were presented for 1,200 ms (almost one complete gait-cycle, comprising 80 frames) centred within a noise window of 1,400 ms. For temporal summation (Fig. 3), the stimulus interval varied within a noise window of 7 s.

Received 12 June; accepted 21 September 1998.

Acknowledgements. We thank H. Barlow and J. Ross for useful discussions. P.N. was supported by a scholarship from the Scuola Normale Superiore, Pisa. Supported by MURST and EC BIOMED (VIPROM). Correspondence and request for materials should be addressed to D.C.B. (e-mail: dayere@fn.in. cnr.it).